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It is shown that the assumption of an exponential distribution of the lifetimes of energized 
molecules involved in the RRKM theory of unimolecular decomposition is fulfilled if the react­
ing molecule represents a dynamic system with the property of mixing in the phase space. If the 
rate of mixing is large in comparison with the decomposition proper, then the ensemble of mole­
cules with energies from e to e + Oe is represented in the course of the decomposition by a micro­
canonical ensemble. The mean lifetime of the molecules is then independent of the choice of the 
origin of the time scale and is equal to the reciprocal value of the specific decomposition rate. 

The assumption of an exponential distribution of lifetimes of isolated energized 
molecules (i.e., molecules with internal energy greater than the critical energy of de­
composition) is one of the postulates of the Rice- Ramsperger-Kassel-Marcus 
(RRKM) theory of unimolecular reactions 1 - 3. The question is whether this postulate 
can be interpreted with the aid of more general concepts about the internal dynamics 
of the energized molecule and on a statistical-mechanical basis. An attempt in this 
sense was made in a recent study4 on the properties of the lifetimes distribution 
and in the present work the original concept is further developed. The energized 
molecule is considered as a dynamic system obeying the laws of classical mechanics; 
its instantaneous state is characterized by a point in the phase space of internal 
coordinates qi and conjugated momenta Pi' 

Definition of Lifetimes Distribution Function 

We shall consider a polyatomic molecule A characterized by internal coordinates 
ql' ... , qn and momenta Pl' ... , Pn' The phase space (ql' ... , Pn) is divided by a 
(2n - l)-dimensional hypersurface 11(ql, ... , Pn) = 0 into a part corresponding to the 
original molecule A (11 < 0) and a part corresponding to its decomposition products 
(Yf > 0) (by decomposition we mean dissociation or isomerization of the molecule). 
The equation H(ql' .. " Pn) = e = const., where H(ql' ... , Pn) is the internal Hamil­
tonian of the molecule, defines a (2n - I)-dimensional hyp~rsurface of constant 
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energy e. The decomposition of the molecule A with energy e > eD (eD denotes dissocia­
tion or isomerization energy) corresponds to a transition of a representative point 
moving on the hypersurface of constant energy e through the boundary 11 = 0 
towards increasing values of 11 . In the part of the phase space corresponding to the 
original molecule A with energy e > eo we can assign to every point a positive 
quantity 1:(ql' ... , Pn) equal to the time interval between realization of the state 
Ql' ... , Pn and the first transition of the isolated molecule through the boundary 
11 = 0 (the lifetime of the isolated molecule with respect to the decomposition). 
All states with energy e < eo are stable with respect to the decomposition; it cannot be 
excluded that stable states exist even for e > eo (the inequality a > aD is only a neces­
sary condition for the decomposition). 

Let l5 V( e) be a part of the phase space enclosed by the hypersurfaces of energies e 
and e + l5a, e > eo. The part l5 V( e) corresponding to the undecomposed molecule A 
(11 < 0) will be denoted as l5VA(a), that corresponding to the decomposition products 
(11 > 0) as l5VB(e). The activation process realizing at time t = 0 the states in l5VA(e) 
is described by the density of states in l5VA (a) at time t = 0, ee(Ql, ... , Pn; 0) i.e., 
the probability that the activation process realizes the state whose representative 
point lies in the infinitesimal volume dQ 1 ... dPn surrounding the point Q 1 , ... , Pn 
in l5VA (a) is proportional to the product ee(qu "', Pn; 0) dQl ... dPn· 

In the volume l5VA (a) we introduce a function of a nonnegative parameter s, 

F,(s)o = f.. }(s - r(ql, "" Pn)) e.(q" .. " Pn; 0) dql .. , dPn/ 

f.. Je,(ql' .. " Pn; 0) dql .. ' dpn ' (1) 

Here h(s - 1:( Q 1 "', Pn)) denotes Heaviside step function and f.· .f ... dQ 1 .•. dPn 
2n-fold integral over the volume bVA(a). If the molecule A represents a dynamic 
system which is ergodic5 in b V( a), there does not exist another constant of motion 
than e and a trajectory starting at any point in l5VA(e) passes finally through the 
boundary 11 = O. The inequality e > eo is then also a sufficient condition for the 
decomposition. In this case we have 

dql' .. " dPn/ f..Je,(ql' .. " Pn; 0) dql .. , dPn = 0, (2) 

The function F£(s)o can be interpreted as a distribution function of the random 
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variable r(8) - the lifetime of molecules A with energy from S to 8 + Oe: the prob­
ability that a molecule A chosen randomly from the ensemble of molecules in OVA(8) 
characterized at time t = 0 by a phase density Qe( q 1, ... ; Pn; 0) will have a lifetime 
smaller than s is Prob{r(8) < s} = Fe(s)o. (The introduction of a distribution func­
tion of lifetimes also for molecules representing a nonergodic system was discussed 
earlier4

.) 

The probability density of lifetimes of molecules A in o VA (8) is defined as 

(3) 

and the mean lifetime of molecules A in 0 VA ( 8) is 

T(e)o = J~sf'(s)o ds = (T(q" ---, P.»o = J.JT(q" ---, P.) 

Il,(q, , --- P.; 0) dq, --- dPn I J. Je,(q, , ---P.; 0) dq, - -- dp. (4) 

on the assumption that these integrals converge. 

The Property of Mixing in Phase Space 

We assume that at a time t = 0 an ensemble of mutually noninteracting molecules A 
with a phase space density QiQ1' ... ,Pn;O) in oVA(e) is prepared by some activa­
tion process. At a time t > 0 this ensemble will be characterized by a phase space 
density Q{ Q l' ... , Pn; t) which will generally differ from the initial density. A change 
in the density occurs owing both to the internal dynamics of the original molecules A 
and to the transition of some molecules A from oVA(s) to OVB(8). The ensemble 
of molecules at time t formed from the original one can be considered as a new starting 
ensemble and we can define for it a distribution function Fe(s)t' density fls)t, and 

mean value r(e )t of lifetimes of molecules A with respect to the origin of the time 
scale at time t. We have obviously 

Fls)t = (Fe(t + s)o - F/t)o)/(l - Fit)o) , 

fe(s)t = fe(t + s)o/(l - Fe(t)o) , 

T(e), = f'(1 -F,(~)o) d~/(l - F,(t)o) -

The ensemble mean value of the quantity X(ql' ... , Po) at time tis 

(5) 

(6) 

(7) 

Collection Czechoslov. Chern. Commun. [Vol. 43] [1978] 



Energized Polyatomic Molecules 

<X(q" .... p"». = J.. JX(q, • ... , Po) e.(q" ... , Po; t) dq, ... dPn/ 

J.. JQ.(q" ... , Pn; t) dq, ... dp" . 

The dynamic system with the property of mixing6 obeys the limit law 
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(8) 

i.e., the ensemble mean value of the dynamic function approaches the equilibrium 
microcanonical value of this quantity. 

We now shall assume that the molecule A fulfils the mixing property in bVA(e) 
and the decomposition rate of molecules A (i.e., their transition from bVA(e) to 
bVB(e)) is much slower than the rate at which <X(ql' ... , qn)t attains its micro­
canonical mean value (the mixing rate in the phase space is large as compared with the 
rate of loss of the molecules from bVA(e)). Let the system at time t = 0 be represented 
by a micro canonical ensemble. On the assumption of rapid mixing, this will be true 
also during the decomposition (this corresponds to the quasiequilibrium hypothesis 
of the RRKM theory), and the ensemble mean value of an arbitrary function of co­
ordinates and conjugated momenta will be independent of the time. Then 

Hence it follows that FE(t + s)o = Fr,(t + s)t and Fit)o = Fit)t; if we introduce 
these expressions into (5), we obtain after rearrangement 

(II) 

By solving this functional equation 7 we obtain 

(12) 

where At is a parameter independent of t and s. Hence, Fis)o = Fis)t = 1 - exp 
(-AEs) and ft(s)o = fis)t = At exp (-Ar,s), which is the exponential probability 
density corresponding to the decomposition rate of molecules A in the c~nsidered 

ensemble according to a kinetic first-order equation. The mean lifetime is 1"(e)o = 

= T( C ) t = 1/ Ar,. 

The form of the lifetimes distribution of molecules for the system with the property 
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of rapid mixing can be derived also in an alternative manner: If the ensemble mean 
value of an arbitrary function of the coordinates and momenta is independent of the 
time, then also according to Eq. (7) 

r(e), = f(1 -F,(e)o) d~/(l - F,(t)o) = 1/)" = const. , (13) 

and after differentiation fe(t)o/(l - FIl(t)o) = Ae (the random quantity T(e) is memory­
less). Solution of this equation gives 1 - Flt)o . = exp ( - AJ) and f,/t)o = At: exp 
(-Att), which on introducing into Eq. (6) gives the exponential density fe(s)t = 

= At exp ( - AEs). 

The obtained result suggests that the property of rapid mixing is a sufficient condi­
tion for the distribution of molecules lifetimes to be exponential. The decomposition 
of the molecules in the ensemble is then characterized by a single constant - specific 
rate of the decomposition4 

(14) 

which does not depend on the time and is a function only of the total internal energy e. 
If the property of rapid mixing in the phase space is fulfilled, then it can be expected 

that the lifetimes distribution will be in general exponential (except for values of t 
close to zero) even when the starting density et( q u ... , Pn; 0) is not uniform, since 
in a short time interval after activation the ensemble becomes an equilibrium micro­
canonical ~nsemble. The way of the activation is then unessential for the kinetics 
of the decomposition (we note that the property of rapid mixing in the phase space 
represents a more general formulation of the concept of rapid intramolecular energy 
redistribution introduced in model theories of unimolecular reactions8

). The mixing 
property can be expected with systems of anharmonic oscillators with strong mutual 
interactions 6

• Studies of the trajectories in the phase space show indeed that the 
distribution of lifetime of molecules modelled by anharmonic oscillators does not 
depend on the type of activation and is nearly exponential after a time of about 15 
vibration cycles (about 10- 13 s) elapsed from the activation9

. It was also proved4 

that the introduction of a rapid intramolecular redistribution of energy among the 
representative oscillators into Slater's harmonic (nonergodic) model of the uni­
molecular decomposition 1 0 leads to lifetime densities close to the exponential 
density. 
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